Анимация
JavaScript
|
Главная Библионтека Переходные типы Основная идея переходного типа (malleable type) - класс, экземпляры которого как бы изменяют свой тип во время выполнения программы. Конечно, формально В C++ такого происходить не может - иначе вам пришлось бы всерьез и надолго подружиться с отладчиком. Тем не менее, чудеса современных указателей позволяют добиться почти того же эффекта. Полиморфные указываемые объекты В базовом варианте ведущего указателя присутствует переменная с типом Pointee*. Нo кто сказал, что объект, на который она ссылается, должен быть настоящим Pointee, а не каким-нибудь классом, производным от Pointee? В файле Foo.h class Foo { protected: Foo(); public: Члены Foo class Pfoo { Ведущий указатель private: Foo* foo; public: PFoo(); Foo* operator->() const { return foo; } Остальные члены, характерные для ведущих указателей В файле Foo.cpp class DerivedFromFoo : public Foo { private: Закрытые члены производного класса public: DerivedFromFoo(); Функция открытая, но спрятанная в файле .cpp Переопределения функций класса Foo PFoo::PFoo() : foo(new DrivedFromFoo) Ловкость рук и никакого мошенничества! Ведущий указатель подсунул вместо Foo нечто совершенно иное, а клиенты ничего не замечают. Ага! Теперь вы понимаете, почему конструктор Foo объявлялся защищенным, а не закрытым! Класс PFoo уже можно не объявлять другом; доступ к конструкторам Foo нужен только конструктору DerivedFromFoo. В части 3 мы поговорим о том, какое наследование нужно, чтобы эта схема работала (а именно, чтобы все классы, производные от Foo, имели тот же открытый интерфейс, что и сам Foo). А пока продолжим изучение указателей и всего, что с ними связано. Выбор типа указываемого объекта во время конструирования Если наш ведущий указатель может создать объект производного класса во время конструирования, почему бы не разрешить ему свободно выбрать нужный тип из нескольких производных классов? В файле Foo.cpp class DeirvedFromFoo : public Foo { ... }; class AlsoDerivedFromFoo : public Foo { ... }; PFoo::PFoo(boo1 x) : foo(x ? new DerivedFromFoo : new AlsoDerivedFromFoo) {} Вообще говоря, интерфейсный указатель может выбрать любой производный класс на основании сведений, доступных во время конструирования. Клиент об этом ничего не знает, поскольку все происходящее скрывается за интерфейсным указателем. Изменение указываемого объекта во время выполнения программы При желании интерфейсный указатель может сменить указываемый объект прямо во время выполнения программы. class Foo; class PFoo { private: Foo* foo; public: PFoo(); void DoSomething(boo1 x); Другие функции класса void PFoo::DoSomething(boo1 x) if (x) { delete foo; foo = new DerivedFromFoo; Foo->DoSomething(); Пример уже встречался в предыдущей главе: при попытке неконстантного обращения к указываемому объекту указатель выбирал другую форму этого объекта. Такой подход работает вполне нормально, если не делать глупостей (например, получать адреса членов указываемого объекта). Посредники Интерфейсные указатели также помогают скрыть тот факт, что указываемый объект находится где-то в киберпространстве, а не сидит в памяти по соседству. В распределенных объектных системах такое происходит сплошь и рядом. Первая цель проектировщика - держать клиентские объекты в блаженном неведении; они не знают и знать не хотят, где находится указываемый объект - на расстоянии плевка или где-то на краю земли. Объект, который заменяет другой, удаленный объект, называется посредником (proxy). На эту тему тоже существует немало вариаций, но самая простая из них - локальное использование интерфейсного объекта или грани. Затем локальный посредник может воспользоваться дистанционными вызовами или другим механизмом отправки сообщений, подходящим для взаимодействия с оригиналом. Эта концепция распространяется и на ситуации, в которых удаленный «объект» вообще не является объектом. Это может быть целое приложение, завернутое посредником в объектно-ориентированную оболочку, или, допустим, содержимое базы данных с библиотечными функциями «класса». В самой идее внедрения «не объектно-ориентированного» кода в объекты С++ нет ничего нового или оригинального. Нас в первую очередь интересует уровень инкапсуляции. Что должен знать клиент о реальной ситуации? Умные указатели на основе операторов -> подходят плохо. Клиент должен знать интерфейс указываемого объекта; следовательно, он должен знать, существует ли указываемый объект, как устроен его интерфейс и т. д. Интерфейсные указатели, в том числе грани - более удачный вариант. Если ваша программа написана с применением интерфейсных указателей, вам будет намного проще вставить новый код, в котором некоторые из этих указателей реализуются в виде посредников. Проще, хотя и не совсем незаметно для клиента - пока. Помните базовую форму интерфейсного указателя с обязательным предварительным объявлением? class Pointee; Предварительное объявление class Interface { private: Pointee* pointee; public: Функции класса Проблема кроется в переменной pointee. Клиент должен знать, что указатель ссылается на нечто, даже если он понятия не имеет, на что именно. В части 3 мы попробуем устранить даже это ограничение, а пока будем считать его досадной мелочью. В результате мы приходим к классическому компромиссу: понижение быстродействия интерфейсных указателей (с вынесенными (outline) функциями) за возможность кардинальных изменений реализации без модификации клиентского кода. В большинстве проектов и классов расходы с лихвой компенсируются ускорением цикла разработки. Функторы Напоследок мы познакомимся с одной диковинкой C++, которая называется функтором (functor). Функторы играют для функций ту же роль, что и интерфейсные указатели для объектов. Одна из проблем, вечно мучивших программистов на С - то, что все функции находятся в глобальном пространстве имен, то есть вызванная функция имеет доступ только к данным, хранящимся в ее аргументах, и глобальным переменным. Если передать адрес функции еще кому-то, то при вызове функции по адресу она не будет помнить, как выглядел окружающий мир во время получения ее адреса. В таких языках, как Паскаль, эта проблема изящно решается получением замыкания (closure) на момент получения адреса функции. procedure p(n: integer); var procedure fn; begin do something(n); end; begin ca11back(@fn); end; В качестве аргумента процедура са11backfn получает адрес другой процедуры. В данном примере ей передается адрес fn. При вызове fn из callbackfn первая имеет доступ к переменным, находившимся в стеке в момент получения адреса. В нашем примере fn знает значение переменной n на момент вызова са11backfn. Замыкания чрезвычайно полезны для обработки обратных вызовов (callback), поскольку функция обратного вызова кое-что знает о том, почему она была вызвана. В С вложенных функций не существует, а следовательно, замыкания невозможны - их место занимают функторы. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [ 31 ] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |