Анимация
JavaScript


Главная  Библионтека 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 [ 33 ] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

return (index < 0 index >= entries) ? dummy : contents[index];

Где-то в файле .cpp

Foo* ArrayOfFoo::dummy = NULL;

Оператор [] возвращает Foo*&, ссылку на адрес Foo. Эта идиома часто встречается при работе с коллекциями, и одна из причин - в том, что возвращаемое значение может использоваться как в левой, так и в правой части выражения присваивания.

Foo* foo = array[17];

array[29] = foo; Работает - можно присваивать по конкретному индексу

Если бы оператор [] возвращал просто Foo*, то содержимое элемента массива копировалось бы, а копия возвращалась вызывающей стороне. Возвращая Foo*&, мы позволяем вызывающей стороне изменить содержимое элемента, а не только прочитать хранящееся в нем значение. Для индекса, выходящего за границы массива, возвращается адрес фиксированной переменной класса, значение которой на самом деле нас не очень интересует. По крайней мере, ваша программа сможет хромать дальше (возможно, при правильно расставленных #ifdef в отладочном режиме), а не извлекать из памяти номер телефона вашей тетушки или другую случайную информацию.

Если вы обеспокоены накладными расходами такого варианта по сравнению с обычными массивами C/C++, заключите все дополнительные вычисления и переменные между директивами #ifdef. В одном варианте компиляции ваш массив будет абсолютно безопасным, а в другом будет иметь те же размер и быстродействие, что и обычный массив.

Оператор [] с нецелыми аргументами

Оператор [] перегружается для аргументов любого типа, а не только для целых. Тогда оператор [] можно использовать для представления словаря - коллекции, в которой один ключевой объект однозначно идентифицирует другой. Ниже приведен набросок ассоциативного класса, в котором хранятся пары строковых объектов String, при этом первая строка каждой пары является индексом второй.

class Association {

Пропускаем подробности реализации

public:

const String& operator[](const String& key);

В клиентской программе

String str = assotiation[another string];

Такой вариант выглядит намного элегантнее и лучше выражает намерения разработчика, нежели интерфейс, построенный только на функциях класса:

String str = assotiation.LookUp(another string);

Имитация многомерных массивов

В любом варианте перегрузки оператор [] вызывается с одним аргументом произвольного типа. Например, компилятор лишь посмеется над следующей попыткой создания многомерного массива, потому что в ней оператор [] имеет несколько аргументов:

class WontWork { public:

Foo& operator[](int x, int y); Ха-ха-ха



Компиляторы обожают подобные ситуации - вроде бы все выглядит вполне логично, но как-то выпало из спецификации языка. Это дает им возможность поразмяться и вывалить все туманные сообщения об ошибках, которые они приберегли на черный день. Но когда сообщения перестанут сыпаться, наступает ваш черед смеяться, поскольку существует простой обходной путь.

struct Index { int x;

int y;

Index(int ex, int why) : x(ex), y(why) {}

bool operator==(const Index& i) { return x == i.x && y == i.y; }

class WorksFine { public:

Foo& operator[](lndex i);

array[lndex(17, 29)].MemberOfFoo(); Работает

Index представляет собой структуру с тривиальным конструктором. Причина перегрузки оператора == станет ясна позже. Выражение Index(17,29) создает анонимный экземпляр, который упаковывает два измерения массива в один аргумент. Правда здорово? Получай, компилятор!

Множественные перегрузки оператора []

Оператор [] может иметь и несколько вариантов перегрузки для данного класса при условии, что сигнатуры остаются уникальными. Например, одна версия может получать аргумент типа int, а другая - аргумент char*, который преобразуется к int функцией atoi(). Скорее всего, ваша коллекция может индексироваться несколькими способами.

class StringArray { public:

const String& operator[](int index); int operator[](const String&);

String str = array[17]; Первая форма

int index = array[String("He11o")]; Вторая форма

Первый оператор [] реализует семантику массива: по целому индексу возвращается значение элемента с этим индексом. Второй оператор обеспечивает обратную возможность: по значению находится соответствующий индекс массива. В этой схеме используется пара допущений (например, уникальное целое, которое возвращается в качестве индекса несуществующего значения), но в целом идея вполне понятна.

Виртуальный оператор []

Оператор [] , как и любой другой оператор или функцию, можно объявить виртуальным и переопределить в производных классах. В некотором базовом классе определяется абстрактный интерфейс, а все подробности реализации предоставляются в производных классах. Такая схема хорошо сочетается с гомоморфными иерархиями классов, описанными в части 3.



Курсоры

В предыдущем разделе мы говорили о присваивании элементам массива. Для массива Foo* все прекрасно работало, но попытка присвоить что-нибудь «элементу» строковой ассоциации кончается неудачей.

association[String("He11o")] = String("Good looking");

Дело в том, что левая часть не является ни левосторонним выражением (lvalue), ни классом с перегруженным оператором =. В этом случае можно сконструировать аргумент с использованием интерфейса вставки в коллекцию на базе функций класса, поскольку это все-таки не настоящий массив, а нечто загримированное под него с помощью оператора []. Многие классы, перегружающие оператор [], с точки зрения семантики являются массивами, но используют хитроумные структуры данных для оптимизации. Давайте рассмотрим конкретный пример (разреженные массивы), а затем вернемся к более общим коллекциям (таким как ассоциации).

Простой класс разреженного массива

Разреженный массив относится к числу основных структур данных. Он представляет собой матрицу, у которой большинство ячеек в любой момент времени остается пустым. Возможно, вы принадлежите к числу счастливчиков с 256 гигабайтами памяти на компьютере, но большинству из нас просто не хватит места для хранения всех ячеек матрицы 1000х1000х1000. Да и не хочется выделять память под миллиард ячеек, если в любой момент из них используется не более 1000. Несомненно, в вашем мозгу всплывают различные структуры данных, знакомые по начальному курсу программирования в колледже: связанные списки, бинарные деревья, хеш-таблицы и все прочее, что упоминает Кнут. На самом деле не так уж важно, какая структура данных лучше подойдет для низкоуровневой реализации. Прежде всего необходимо понять, как же использовать эти низкоуровневые средства и одновременно создать для клиентских объектов впечатление, что они имеют дело с самым обычным массивом?

В следующей реализации «методом грубой силы» для хранения данных используются связанные списки. Структура Index уже встречалась нам выше.

class SparseArray { private:

struct Node {

Index index; Индекс массива

Foo* content; Содержимое массива по данному индексу

Node* next; Следующий элемент списка

Node(lndex i, Foo* f, Node* n) : index(i), content(f), next(n) {};

Node* cells; Связанный список элементов public:

SparseArray() : cells(NULL) {} Foo* operator[](Index i);

inline Foo* SparseArray::operator[](lndex i)

Simp1eSparseArray::Node* n = cells; while (n != NULL) {

if (n->index == i) Использует перегруженный оператор == return n->content;

n = n->next;

return NULL;



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 [ 33 ] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82