Анимация
JavaScript
|
Главная Библионтека Материал, изложенный далее, делится на четыре темы: 1 . Организация памяти. 2. Поиск периметра. 3. Перебор внутри периметра. 4. Сборка мусора. Организация памяти Существует несколько ключевых вопросов, на которые вы должны уметь быстро отвечать. А для этого необходимо, чтобы память находилась в более-менее организованном состоянии: 1. Известен некий участок памяти. Хранится ли в нем адрес или что-то другое - скажем, номер банковского счета? 2. Известен адрес. Ссылается ли он на объект или просто на случайное место в памяти? 3. Известен адрес объекта. К чему он относится - к вмещающему объекту или же к переменной или базовому классу другого объекта? Блоки памяти Управляемый блок памяти начинается с короткого заголовка, в котором хранится следующая информация: • физический размер блока; • признак использования блока; • логический размер блока. Первоначально вся память представляет собой один большой блок. Когда блок делится, он всегда делится пополам. Рекурсивное деление продолжается, пока не будет найден блок, размер которого равен минимальной степени 2, достаточной для хранения создаваемого объекта. В процессе удаления по начальному адресу блока и его размеру можно легко определить его парный блок; это обеспечивает эффективное объединение смежных свободных блоков. А теперь ответим на вопросы, перечисленные выше. Является ли значение адресом? Является ли некоторая четрехбайтовая (на большинстве компьютеров) величина адресом памяти? Будем считать, что является, если она указывает внутрь всего управляемого пространства (то есть исходного, неразделенного блока). Является ли адрес адресом объекта? Будем считать, что является, если адрес лежит в логическом диапазоне используемого блока. Логический диапазон начинается после заголовка и завершается на его логическом размере. Наименьший блок, содержащий данный адрес, находится с помощью поиска в бинарном дереве памяти. Если адрес находится за пределами управляемой памяти и указывает на неиспользуемый блок или на заголовок блока, он не может быть адресом объекта. Ссылается ли адрес на объект верхнего уровня? Если точка, на которую ссылается адрес, расположена сразу же после заголовка используемого блока, то адрес ссылается на объект верхнего уровня. Если адрес ссылается на некоторую внутреннюю точку объекта, он соответствует переменной класса или базовому классу вмещающего объекта. Быстродействие Если управляемая память имеет длину N байт и вы никогда не выделяете менее 2м байт, то ответы на все три вопроса потребуют не более N-M просмотров заголовков блоков. Например, если N=20 (один мегабайт), а М=4 (минимальный размер блока равен 16 байтам), потребуется не более 16 попыток. Это не так уж мало, поэтому важно найти оптимальный размер блока - большие блоки увеличивают фрагментацию, но сокращают количество просмотров. Поиск периметра Снятие ограничения «дескрипторы повсюду» означает, что будет разрешен код наподобие следующего: class Foo { private: Bar* bar; Foo* f = new Foo; Кроме того, это означает, что будут разрешены указатели на базовые классы (помните дурацкие фокусы с this?) и указатели на переменные классов. Кончено, становится намного сложнее определить, что доступно, а что - нет, начиная с поиска периметра. Рассмотрим два варианта. Умные указатели Как и прежде, самое надежное - хранить умные указатели в стеке, даже если они и не являются дескрипторами. Для перебора этих указателей можно воспользоваться скрытой коллекцией. Конструктор умного указателя заносит его в коллекцию, а деструктор - удаляет. Перебор стека Возможно, это звучит довольно странно, однако периметр можно определить приближенно, с ошибкой в консервативную сторону (то есть с «запасом»). Достаточно просто просканировать стек и найти в нем значения, соответсвующие адресам объектов. Всегда существует вероятность, что там найдется переменная с телефоном тетушки Милли из Небраски, которая по чистой случайности совпадает с адресом некоторого объекта в памяти. Это называется имитацией указателя (pointer aliasing). В результате объект помечается как доступный, хотя в действительности он недоступен. Обычно это не имеет вредных последствий, разве что несколько неиспользуемых байт не будут возвращены в систему. Подумайте хорошенько - случайный «адрес» в стеке должен не только ссылаться на нужное место в памяти, но и быть единственным указателем на недоступный объект. В общем, особенно переживать не стоит. Пометка объектов Итак, вы определили, что стековая величина ссылается на допустимый объект. Теперь необходимо пометить этот объект. Бит пометки должен быть частью заголовка блока, поэтому единственная хитрость заключается в том, как эффективно найти наименьший содержащий блок. Для этого придется перебирать дерево памяти до тех пор, пока не будет найден заголовок наименьшего блока. Перебор внутри периметра После того как вы определите периметр одним из перечисленных выше способов, возникает следующая задача - пройтись по всем объектам внутри периметра. И снова существуют два основных варианта: анализ объекта или интерпретация всех значений как потенциальных указателей. Анализ объекта Программу можно видоизменить, чтобы в перебор включались только указатели внутри каждого объекта. При этом можно использовать решение с виртуальными функциями, объектами классов или даже заставить умные указатели организовать перебор указателей в тех объектах, на которые они ссылаются. В любом случае вам придется основательно потрудиться над модификацией кода ваших классов. Силовое решение Второй вариант - просканировать весь логический размер каждого помеченного объекта в поисках потенциальных адресов объектов. Мы делаем то же самое, что делалось раньше для стека, и сталкиваемся со знакомой проблемой имитации указателей - раздражающей, но безвредной. Каждый раз, когда будет найдено значение, соответствующее адресу некоторого объекта, этот объект помечается и включается в рекурсию. Внешние объекты При управлении несколькими пространствами памяти можно встретить объекты, находящиеся не в главном пространстве, в котором происходит сборка мусора, а в другом пространстве по вашему выбору. Тот факт, что объект является внешним, не снимает с вас ответственности - он вполне может ссылаться обратно, в управляемое пространство. Если это пространство не было рассчитано на эффективный перебор указателей (то есть не имеет заголовков объектов), дальше выкручивайтесь сами. Сборка мусора Итак, к концу фазы пометки вы определили доступные объекты. Что же дальше? Без дескрипторов и ведущих указателей уплотнение неоправдано, поскольку не существует единого места, в котором можно было бы обновить адрес перемещаемого объекта. Теоретически можно сделать второй проход по памяти и обновить все указатели тем же способом, который использовался при пометке доступных объектов. Прежде чем это делать, закупите побольше акций производителей мощных RISC-компьютеров: работы у них прибавится. Более практичное решение - организовать сборку мусора на месте. Если вы не можете гарантировать, что все объекты происходят от общего предак, деструкторы лучше не вызывать (а если можете, то зачем использовать такую извращенную и ненадежную архитектуру?). Вполне может оказаться, что вы имеет дело с int или char*; никто не гарантирует, что у вашего объекта есть v-таблица! Не забывайте о том, что С++ - это все-таки не Lisp и не SmallTalk. Последовательная сборка мусора Алгоритмы пометки и удаления довольно трудно реализовать в последовательном варианте, но при должном внимании возможно и это. К сожалению, подробности выходят за рамки этой книги, но они относятся не к С++, а к выбранным вами конкретным алгоритмам. Итоговые перспективы В двух последних главах я попытался показать, как сделать на С++ то, для чего он не предназначен. В методиках управления памятью сочетается все, о чем говорилось в книге, от простейших умных указателей и гомоморфизма до объектов классов и подсчета ссылок. Но имеет ли все сказанное какое-нибудь практическое значение или является высокоинтеллектуальным развлечением? Во-первых, лучший способ понять границы возможностей С++ и разобраться в его идиомах - залезть в дебри управления памятью. Даже если в ваших проектах это не нужно, хорошее понимание языковых ограничений и представления объектов в памяти только пойдет вам на пользу. В конце концов, это повысит вашу квалификацию в отладке, поскольку вы будете досконально понимать, как объекты хранятся в памяти. Во-вторых, в один прекрасный день перед вами может возникнуть задача: организовать серьезное управление памятью по промышленным стандартам. Когда эта беда произойдет, вы будете к ней готовы. И помните, что эти главы не содержат конкретных решений, а лишь показывают, как реализуются на С++ алгоритмы, выкопанные пыли академических изданий. Все описанные приемы пригодятся, но мы лишь мимоходом коснулись этой обширной темы. В-третьих, представьте себе вечеринку по С++. Вы ждете, когда окружающие придут в хорошее расположение духа, берете мартини и произносите ключевую фразу: «Помню, летом 95-го делали мы один проект на С++, и возникла задача: реализовать схему сборки мусора с уплотнением Развлекайтесь! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 [ 80 ] 81 82 |