Анимация
JavaScript


Главная  Библионтека 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

{ Parse and Translate a Boolean Expression }

procedure BoolExpression;

begin

BoolTerm;

while IsOrOp(Look) do begin EmitLn(MOVE D0,-(SP)); case Look of

: BoolOr;

BoolXor;

end; end; end;

Обратите внимание на новую процедуру IsOrOp, которая также является копией, на этот раз IsAddOp:

{ Recognize a Boolean Orop } function IsOrop(c: char): Boolean; begin

IsOrop := c in [, -]; end;

ОК, переименуйте старую версию BoolExpression в BoolTerm, затем наберите код, представленный выше. Откомпилируйте и протестируйте эту версию. К этому моменту выходной код начинает выглядеть довольно хорошим. Конечно, нет большого смысла от булевой алгебры над постоянными значениями, но скоро мы расширим булевы типы, с которыми мы работаем.

Возможно вы уже предположили, какой будет следующий шаг: булевская версия Term.

Переименуйте текущую процедуру BoolTerm в NotFactor, и введите следующую новую версию BoolTerm. Заметьте, что она намного более простая, чем числовая версия, так как здесь нет эквивалента деления.

{ Parse and Translate a Boolean Term }

procedure BoolTerm;

begin

NotFactor;

while Look = & do begin EmitLnCMOVE D0,-(SP)); MatchC&); NotFactor;

EmitLnCAND (SP)+,D0); end; end;

Теперь мы почти дома. Мы транслируем сложные булевые выражения, хотя только и для постоянных значений. Следующий шаг - учесть NOT. Напишите следующую

процедуру:



{ Parse and Translate a Boolean Factor with NOT }

procedure NotFactor;

begin

if Look = ! then begin

Match(!);

BoolFactor; EmitLnCEOR #-1,D0); end else

BoolFactor;

end;

И переименуйте предыдущую процедуру в BoolFactor. Теперь испытайте компилятор. К этому времени синтаксический анализатор должен обрабатывать любое булевое выражение, которое вы позаботитесь ему подкинуть. Работает? Отлавливает ли он неправильно сформированные выражения?

Если вы следили за тем, что мы делали в синтаксическом анализаторе для математических выражений вы знаете что далее мы расширили определение показателя для включения переменных и круглых скобок. Мы не должны делать это для булевого показателя, потому что об этих маленьких вещах позаботится наш следующий шаг. Необходима только одна дополнительная строка в BoolFactor, чтобы позаботиться об отношениях:

{ Parse and Translate a Boolean Factor }

procedure BoolFactor;

begin

if IsBoolean(Look) then if GetBoolean then

EmitLnCMOVE #-1,D0) else

EmitLn(CLR D0) else Relation;

end;

Вы могли бы задаться вопросом, когда я собираюсь предоставить булевские переменные и булевские выражения в скобках. Отвечаю: никогда. Помните, ранее мы убрали их из грамматики. Прямо сейчас я собираюсь кодировать грамматику, которую мы уже согласовали. Сам компилятор не может видеть разницы между булевыми переменными или выражениями и арифметическими переменными или выражениями... все это будет обрабатываться в Relation в любом случае.

Конечно, понадобится некоторый код для Relation. Однако, я не чувствую себя комфортно, добавляя еще код, не проверив сперва тот, который мы уже имеем. Так что давайте сейчас просто напишем фиктивную версию Relation, которая ничего не делает за исключением того, что съедает текущий символ и выводит небольшое сообщение:

{ Parse and Translate a Relation }

procedure Relation;

begin

WriteLn(<Relation>); GetChar; end;



ОК, наберите этот код и испытайте его. Все старые дела все еще должны работать... у вас должна быть возможность генерировать код для AND, OR и NOT. Кроме того, если вы наберете любой алфавитный символ, вы должны получить небольшой заменитель <Relation>, где должен быть булев показатель. Вы получили это? Отлично, тогда давайте перейдем к полной версии Relation.

Чтобы получить ее, тем не менее, сначала мы должны положить небольшое основание. Вспомните, что отношение имеет форму:

<relation> ::= <expression> [<relop> <expression]

Так как у нас появился новый вид операторов, нам также понадобится новая логическая функция для ее распознавания. Эта функция показана ниже. Из-за ограничения в один символ, я придерживаюсь четырех операторов, которые могут быть закодированы такими символами ("не равно" закодировано как "#").

{ Recognize a Relop }

function IsRelop(c: char): Boolean;

begin

IsRelop := c in [=, #, <, >]; end;

Теперь вспомните, что мы используем нуль или -1 в регистре D0 для представления логического значения и также то, что операторы цикла ожидают, что будет установлен соответствующий флаг. При реализации всего этого для 68000 все становится немного сложным.

Так как операторы цикла выполняются только по флажкам, было бы хорошо (а также довольно эффективно) просто установить эти флажки и совсем ничего не загружать в D0. Это было бы прекрасно для циклов и ветвлений, но запомните, что отношения могут быть использованы везде, где могут быть использованы булевы показатели . Мы можем сохранять его результат в булевой переменной. Так как мы не можем знаеть пока как будет использоваться результат, мы должны учесть оба случая.

Сравнение числовых данных достаточно просто... 68000 имеет команду для этого... но она устанавливает флажки а не значение. Более того, всегда будут устанавливаться те же самые флажки (ноль если равно, и т.д.), в то время, как нам необходим по-разному установленный флажок нуля для каждого различного оператора отношения.

Решение заключается в инструкции Scc процессора 68000, которая устанавливает значение байта в 0000 или FFFF (забавно как это работает!) в зависимости от результата определенного условия. Если мы сделаем байтом результата регистр D0, мы получим необходимое логическое значение.

К сожалению, имеется одно заключительное осложнение: в отличие от почти всех других команд в наборе 68000, Scc не сбрасывает флажки условий в соответствии с сохраняемыми данными. Поэтому мы должны сделать последний шаг, проверить D0 и установить соответствующим образом флажки. Это должно быть похоже на оборот вокруг луны для получения того, что мы хотим: мы сначала выполняем проверку, затем проверяем флажки, чтобы установить данные в D0, затем тестируем D0 чтобы установить флажки снова. Это окольный путь, но это самый простой способ получить правильные флажки и, в конце концов, это всего лишь пара инструкций.

Я мог бы упомянуть здесь, что эта область, по моему мнению, показывает самые большие различия между эффективностью вручную написанного на ассемблере и сгенерированного компилятором кода. Мы уже видели, что мы теряем эффективность при арифметических операциях, хотя позже я планирую показать вам как ее немного улучшить. Мы также видели, что управляющие конструкции сами по себе могут быть



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97