Анимация
JavaScript
|
Главная Библионтека ЛИТЕРАТУРА [33] Gordon J. Strong RSA keys Electronics letters. -1984. -V. 20.- P. 514-516. [34] Kranakis E. Primality and Cryptography.- N.-Y., Toronto, 1985. [35] Lehmer D. H. An extended theory of Lucas functions Ann. Math. -1930. -Bd. 31. -S. 419-448. Reprinted in: Selected Papers. Vol.1. / D. McCarthy, Ed.-Ch. Babbage Res. Center, St. Pierre, Manitoba Canada, 1981. -P.ll-48. [36] Lehmer D.H. Strong Carmichael numbers J. Austral. Math. Soc. Ser. A.-1976.-V.21, №.4, P.508-510. [37] Lenstra Л.К., Lenstra H. W, Jr. Algorithms in number theory Handbook of theoretical computer science. Vol. A. Algorithms and complexity, Ch. 12.-Amsterdam: Elsevier, 1990.-P.674-715. [38] The development of the number field sieve / Lenstra A.K., Lenstra H.W, Jr., Eds.-Berlin: Springer-Verlag, 1993. [39] Maurer U. M. Fast generation of prime Numbers and Secure Public-key Cryptographic parameters J. Cryptology. - 1995. - V. 8.- P. 123-155. [40] Mihalescu P. Fast generation of provable primes using search in arithmetic progressions Advances in cryptology - CRYPTO94 (LNCS839). - 1994. - P. 282-293. [41] Miller G. L. Riemanns hypothesis and tests for primality J. Com-put. System Sci. -1976. -V. 13. - P. 300-317. [42] Montgomery P. L. Modular Multiplication Without Trail Division Math, of Сотр.-1985.-V.44, No. 170.-P. 519-521. [43] Poclington H. C. The detemination of the prime or composite nature of ladge numbers by Fermats theorem Proc. of the Cambridge Society. -1914-1916. - V. 18. - P. 29-30. [44] Pollard J. Theorems on factorization and primality testing Proc. Cambridge Phil. Soc. - 1974. V. 76. - P. 521-528. [45] Pollard J. Monte-Carlo method for factorization BIT. -1974.- V. 15.-P. 331-334. [46] Pollard J. Monte-Carlo method for index computation (mod p) Mathematics of Computation. -1978. V. 32. -P. 918-924. [47] Pomerance C. The quadratic sieve factoring algorithm Advances in cryptology-EUROCRIPT84 (LNCS209).-1985.-P. 169-183. ЛИТЕРАТУРА [48] Pomerance C. Fast and rigorous factorization and discrete logarithm algorithm Discrete algorithms and complexity: Proc. of the Japan-US joint seminar. -London: Acad. Press, 1987. -P. 119-143. [49] Rabin M. Probabilistic algorithms for testing primality Journal of Number Theory. -1980. - V. 12. - P. 128-138. [50] Rivest R. L., Shamir A., Adleman L. A method for obtaining digital signatures and pubhc-key cryptosystems Commun. ACM. -1978. - V.21, No.2.-P. 120-126. [51] Shallit J., Sorenson J. Analysis of a left-shift binary GCD algorithm J. Symbolic Comput. -1995. -P. 169-183. [52] Silverman R. D. The multiple polinomial quadratic sieve Math. Comput. -1987. - V. 48, No. 177. - P. 329-339. [53] Solovay R., Strassen V. A Fast Monte-Carlo Test for Primality SIAM J. Comput.-1977.-V.6(1).-P.84-85. [54] Solovay R., Strassen V. Erratum: A Fast Monte-Carlo Test for Primality SIAM J. Comput.-1978. V. 7(1).-P. 118. [55] Stinson D.R. Cryptography. Theory and practice -The CRC Press Series on Discrete Math, and Appl., 1995. [56] Western A., Miller J. Tables of indices and primitive roots Royal Society Mathematical Tables. -1968. - V.9. [57] William,s H. C. A modification of the RSA public-key cryptosystem IEEE Trans. Inform. Theory. -1980. -V. 26, No. 6. - P. 726-729. [58] Williams H. C. A numerical investigation into the length of the period of the continued fraction expansion ofVO) Math. Сотр.-1981.-V.36.-P. 593-601. [59] Wiedemann D. Solving sparse linear equations over finite field IEEE Trans. Inform. Theory. -1986.-V.32, No. 1. -P. 54-62. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [ 16 ] |