Анимация
JavaScript
|
Главная Библионтека Пусть для любого X Нх = У (----). Тогда n + xj п>1 Я1/2 = 2-21п2, Я1/з = 3-7г/ч/3-1пЗ, 2/3 = 1+Wv- In 3, Я1/4 = 4- 7г-31п2, Яз/4 = 1+ §7Г-31п2, ffl/5 = 5 - 7Гз/25-1/4 I In 5 1 , Ну, = I - 7гГ/5-1/" - f In 5 + iv/5 In 0, я3/5 = I + 7гr/5-l/ - 1п5+ ч/51п, я4/5 = I + 1/25-1/" - I In 5 - У5 In , Я1/6 = 6- 7гч/3-21п2~ flnS, 5/6 = + 5\/3-21n2~ln3 и в общем случае, когда О <р < q (см. упр. 1.2.9-19), Я„/„ = - cot -тг - In 2д + 2 > cos-тг • In sin -тг. ПРИЛОЖЕНИЕ Б ОСНОВНЫЕ ОБОЗНАЧЕНИЯ Буквы в формулах, если не оговорено дополнительно, имеют следующий смысл. j, к Арифметическое выражение, принимающее целочисленное значение т, п Арифметическое выражение, принимающее неотрицательное целочисленное значение X, у Арифметическое выражение, принимающее действительное значение / Функция, принимающая действительное или комплексное значение Р Выражение, значение которого-указатель (либо Л, либо адреса компьютера) 5, Т Множество или мультимножество а Строка символов
Обозначение R{k) R(k) min/(A;) R{k) max f(k) j\k S\T gcd(i, k) j ±k Т{х + к)/Т{х) = ( fc>o= П (+-?); 1/(2:+ ) 0<j«. х\1{х-к)\ = fc>o= П 1/(2-)- 0<j<fc п факториал: Г(п -- 1) = п- 1.2.3 1.2.4 1.1 1.2.4 1.2.3 1.2.2 1.2.2 1.2.5 1.2.5 1.2.5 1.2.3 1.2.3 1.2.9 1.2.3 1.2.3 1.2.3 Характеристическая функция условия В: (В = 1; 0) Символ Кронекера: [j = к] Коэффициент при в степенном ряду g{z) Сумма всех f{k), таких, что значение к - целое и выполняется соотношение Щк) Произведение всех f{k), таких, что значение к - целое и выполняется соотношение Щк) Минимальное значение из всех f{k), таких, что значение к - целое и выполняется соотношение Щк) Максимальное значение из всех f{k), таких, что значение к - целое и вьшолняется соотношение Щк) j делит к: к mod j = О и j > О Разность множеств: {о I о принадлежит 5 и о не принадлежит Г} Наибольший общий делитель j и к: (j = k = 00: max d \ d\j.d\k ) j взаимно простое с к: gcd(j, к) = 1 Транспонированная прямоугольная таблица (матрица) А: A[j,k]=A[k,j] Левый обратный элемент к а X в степени у (когда х - положительное число) X в степени fc; 0<j<k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 [ 224 ] 225 |